You are given an m x n integer matrix grid, where you can move from a cell to any adjacent cell in all 4 directions.
Return the number of strictlyincreasing paths in the grid such that you can start from any cell and end at any cell. Since the answer may be very large, return it modulo10^9 + 7.
Two paths are considered different if they do not have exactly the same sequence of visited cells.
Example 1:
Input: grid = [[1,1],[3,4]]
Output: 8
Explanation: The strictly increasing paths are:
- Paths with length 1: [1], [1], [3], [4].
- Paths with length 2: [1 -> 3], [1 -> 4], [3 -> 4].
- Paths with length 3: [1 -> 3 -> 4].
The total number of paths is 4 + 3 + 1 = 8.
Example 2:
Input: grid = [[1],[2]]
Output: 3
Explanation: The strictly increasing paths are:
- Paths with length 1: [1], [2].
- Paths with length 2: [1 -> 2].
The total number of paths is 2 + 1 = 3.
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 1000
1 <= m * n <= 10^5
1 <= grid[i][j] <= 10^5
解題
const mod = 1000000007
func countPaths(grid [][]int) int {
dp := make([][]int, len(grid))
for i := range grid {
dp[i] = make([]int, len(grid[i]))
}
result := 0
for i := 0; i < len(grid); i++ {
for j := 0; j < len(grid[0]); j++ {
result = (result + search(grid, dp, 10000001, i, j)) % mod
}
}
return result
}
func search(grid, dp [][]int, previousValue, x, y int) int {
if x < 0 || x >= len(grid) || y < 0 || y >= len(grid[0]) || previousValue <= grid[x][y] {
return 0
}
if dp[x][y] > 0 {
return dp[x][y]
}
dp[x][y] = 1
dp[x][y] += search(grid, dp, grid[x][y], x-1, y) % mod
dp[x][y] += search(grid, dp, grid[x][y], x+1, y) % mod
dp[x][y] += search(grid, dp, grid[x][y], x, y-1) % mod
dp[x][y] += search(grid, dp, grid[x][y], x, y+1) % mod
return dp[x][y]
}
之前的錯誤解法:
func countPaths(grid [][]int) int {
mod := 1000000007
dr := []int{1, 0, -1, 0}
dc := []int{0, 1, 0, -1}
dp := make([][]int, len(grid))
for i:=0; i<len(dp); i++ {
dp[i] = make([]int, len(grid[0]))
}
var dfs func(int, int) int
dfs = func(r int, c int) int {
if dp[r][c] > 0 {
return dp[r][c]
}
dp[r][c] = 1
for i:=0; i<4; i++ {
nr := r + dr[i]
nc := r + dc[i]
if nr >= 0 && nr < len(grid) && nc >= 0 && nc < len(grid[0]) && grid[nr][nc] > grid[r][c] {
dp[r][c] = (dp[r][c]%mod + dfs(nr,nc)%mod)%mod
}
}
return dp[r][c]
}
res := 0
for i:=0; i<len(grid); i++ {
for j:=0; j<len(grid[0]); j++ {
res = (res%mod + dfs(i, j)%mod)%mod
}
}
return res
}