Given the root of a binary tree, find the maximum value v for which there exist different nodes a and b where v = |a.val - b.val| and a is an ancestor of b.
A node a is an ancestor of b if either: any child of a is equal to b or any child of a is an ancestor of b.
Example 1:
Input: root = [8,3,10,1,6,null,14,null,null,4,7,13]
Output: 7
Explanation: We have various ancestor-node differences, some of which are given below :
|8 - 3| = 5
|3 - 7| = 4
|8 - 1| = 7
|10 - 13| = 3
Among all possible differences, the maximum value of 7 is obtained by |8 - 1| = 7.
Example 2:
Input: root = [1,null,2,null,0,3]
Output: 3
Constraints:
The number of nodes in the tree is in the range [2, 5000].
0 <= Node.val <= 10^5
解題
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */funcmaxAncestorDiff(root *TreeNode) int { ans :=0var helper func(*TreeNode, int, int) helper =func(root *TreeNode, max int, min int) {if root ==nil {return }ifabs(max - root.Val) > ans { ans =abs(max - root.Val) }ifabs(min - root.Val) > ans { ans =abs(min - root.Val) } nmax := max nmin := minif root.Val > nmax { nmax = root.Val }if root.Val < nmin { nmin = root.Val }helper(root.Right, nmax, nmin)helper(root.Left, nmax, nmin) }helper(root, root.Val, root.Val)return ans}funcabs(a int) int {if a <0 {return-a }return a}