1863. Sum of All Subset XOR Totals

Easy
The XOR total of an array is defined as the bitwise XOR of all its elements, or 0 if the array is empty.
  • For example, the XOR total of the array [2,5,6] is 2 XOR 5 XOR 6 = 1.
Given an array nums, return the sum of all XOR totals for every subset of nums.
Note: Subsets with the same elements should be counted multiple times.
An array a is a subset of an array b if a can be obtained from b by deleting some (possibly zero) elements of b.
Example 1:
Input: nums = [1,3]
Output: 6
Explanation: The 4 subsets of [1,3] are:
- The empty subset has an XOR total of 0.
- [1] has an XOR total of 1.
- [3] has an XOR total of 3.
- [1,3] has an XOR total of 1 XOR 3 = 2.
0 + 1 + 3 + 2 = 6
Example 2:
Input: nums = [5,1,6]
Output: 28
Explanation: The 8 subsets of [5,1,6] are:
- The empty subset has an XOR total of 0.
- [5] has an XOR total of 5.
- [1] has an XOR total of 1.
- [6] has an XOR total of 6.
- [5,1] has an XOR total of 5 XOR 1 = 4.
- [5,6] has an XOR total of 5 XOR 6 = 3.
- [1,6] has an XOR total of 1 XOR 6 = 7.
- [5,1,6] has an XOR total of 5 XOR 1 XOR 6 = 2.
0 + 5 + 1 + 6 + 4 + 3 + 7 + 2 = 28
Example 3:
Input: nums = [3,4,5,6,7,8]
Output: 480
Explanation: The sum of all XOR totals for every subset is 480.
Constraints:
  • 1 <= nums.length <= 12
  • 1 <= nums[i] <= 20

解題

func subsetXORSum(nums []int) int {
ans := 0
​
var dfs func(int, int)
dfs = func(index int, xor int) {
if index >= len(nums) { return }
​
ans += xor ^ nums[index]
​
dfs(index + 1, xor ^ nums[index])
dfs(index + 1, xor)
}
​
dfs(0, 0)
​
return ans
}