Given an array of integers arr, you are initially positioned at the first index of the array.
In one step you can jump from index i to index:
i + 1 where: i + 1 < arr.length.
i - 1 where: i - 1 >= 0.
j where: arr[i] == arr[j] and i != j.
Return the minimum number of steps to reach the last index of the array.
Notice that you can not jump outside of the array at any time.
Example 1:
Input: arr = [100,-23,-23,404,100,23,23,23,3,404]
Output: 3
Explanation: You need three jumps from index 0 --> 4 --> 3 --> 9. Note that index 9 is the last index of the array.
Example 2:
Input: arr = [7]
Output: 0
Explanation: Start index is the last index. You do not need to jump.
Example 3:
Input: arr = [7,6,9,6,9,6,9,7]
Output: 1
Explanation: You can jump directly from index 0 to index 7 which is last index of the array.
Constraints:
1 <= arr.length <= 5 * 10^4
-10^8 <= arr[i] <= 10^8
解題
BFS
funcminJumps(arr []int) int { steps :=0 n :=len(arr) m :=make(map[int][]int) for i:=0; i<n; i++ {if _, ok := m[arr[i]]; !ok { m[arr[i]] = []int{ i } } else { m[arr[i]] =append(m[arr[i]], i) } } visited :=make([]bool, n) visited[0] =true visitedv :=make(map[int]bool) // 經過的數字,已經進過queue了 queue :=make([]int, 0) queue =append(queue, 0)forlen(queue) !=0 { newqueue :=make([]int, 0) size :=len(queue)for i:=0; i<size; i++ { current := queue[i]if current == n-1 { return steps } canJump := []int{} // 當前數字可以跳去的位置儲存if!visitedv[arr[current]] { // 有些位置已經去過,就不加入下回的queue了,不做這一步會 TLE canJump = m[arr[current]] } canJump =append(canJump, current +1) canJump =append(canJump, current -1)for _, v :=range canJump {if v >0&& v < n &&!visited[v] { visited[v] =true newqueue =append(newqueue, v) } } visitedv[arr[current]] =true } queue = newqueue //進入下一回合,step也要加一 steps++ }return-1}